Structure of the HIV-1 Capsid Assembly by a hybrid approach

Juan R. Perilla juan@ks.uiuc.edu

Theoretical and Computational Biophysics Group University of Illinois at Urbana-Champaign

HIV infective cycle

Nature 497 (7451), 643-646

Structure of the HIV capsid

Pentamers introduce sharp declinations

Continuously changing curvature in the hexagonal lattice

Ganser, B. K. (1999). Science, 283, 80–83

Highly schematic model; beads are not proteins!

Briggs, J. et al. (2006). Structure, 14, 15–20

Capped fullerene cone

Structure of Full Length CA NTDs and CTDs play different roles

hexameric center

trimeric center

NTD = N-terminal domain

There are also dimeric symetry centers!

CA-hexameric **planar** lattice in crystal

CTD = C-terminal domain

NTD fills inside space of hexamers, CTD fills outside.

Ganser-Pornillos, B. K. et al. (2007). *Cell*, 131(1), 70–9.

Structure of Full Length CA NTDs and CTDs play different roles

C-terminal domain

N-terminal domain

hexameric center

trimeric center

There are also dimeric symmetry centers!

CA-hexameric **planar** lattice in crystal

NTD fills inside space of hexamers, CTD fills outside.

Ganser-Pornillos, B. K. et al. (2007). *Cell*, 131(1), 70–9.

NMR structures for the CTD dimers

Byeon, I.-J., Gronenborn, et al. (2009). Cell, 139(4), 780–790.

MDFF Structural Refinement

hydrophobic interaction at trimeric a view into the trimeric interface, interface, surr. by polar residues

contacts between three helices 10

bonds

MDFF reveals a different hexameric conformation and a novel trimeric interface

Nature 497 (7451), 643-646

All-atom MD simulation of mature HIV-1 capsid

- 216 hexamers +12 pentamers (13.4 M),
- 64 million atoms total including solvent
- 100 ns running NAMD on 4000 Cray-XE nodes, 128000 cores
- 6 ns/day

All-atom MD simulation of mature HIV-1 capsid

- 186 hexamers +12 pentamers (12 M),
- 64 million atoms total
- 500 ns running NAMD on NCSA Blue Waters
 2000 to 3500 XK Nodes equipped with NVIDIA Tesla K20X
- 9 to 14 ns/day

Solvation of large systems

Avoid GUI altogether. Scripts offer more control over the modeling process. Use JS file format. Available in all version of psfgen and developmental versions of VMD.

- **PROBLEM**:
 - Solvate GUI/script performs several atom selections that result in poor performance for large systems. Solvating a large structure can take **days**.

Create an empty water box of 100nm x 100nm x 100nm solvate -o solvent.js -minmax {{0 0 0} {1000 1000 1000}}

Load solute and solvent and save as a single js file with clashes.

package require psfgen readjs solute.js readjs solvent.js writejs clashes.js

Save non clashing atoms

mol new clashes.js set good [atomselect top "not same residue as within 2.4 of not segname \"W.*\""]

\$good writejs final.js \$good writenamdbin final.coor

Ionization of large systems

Autoionize does NOT handle large structures properly.

Limited to one segment (9999 atoms).

Also a problem for high ionic concentrations in medium sized systems. Default parameters for ions are CHARMM22 unless manually changed.

Get water segments

set water [atomselect top "water"]
set segments [lsort -unique [\$water get segnames]]

Loop over water segments and ionize each segment independence for each watseg \$segments {

#Select current water segment

set atomsel [atomselect top "segname \${watseg}]

#Write segment as a pdb

\$atomsel writepdb water/\${watseg}.pdb

#Create a psf for water segment

segment \${watseg} {

auto none

pdb watert/\${watseg}.pdb

} ; coordpdb water/\${watseg}.pdb \$watseg

writepdb water/\${watseg}.pdb

writepsf watert/\${watseg}.psf

Ionization of large systems

Get new segment name for ionized water box

set number [string trimleft \${watseg} W]
set segment I\${watseg}

Ionize each water segment

```
autoionize -psf water/${watseg}.psf -pdb water/${watseg}.pdb -sc $sc
-o ions/$segment -seg $segment
```

```
# Load solute and ionized water box
```

resetpsf readjs solute.js

}

```
foreach watseg $segments {
```

set number [string trimleft \${watseg} W]

```
set segment I${watseg}
```

readpsf ions/\$segment

```
coordpdb ions/$segment
```

```
}
writejs ionized.js
writenamdbin ionized.coor
```

IMPORTANT: Make sure the system is neutralized, add more ions if necessary.

Special considerations for simulations of large systems

- Use the new minimizer. Older versions of NAMD require the use of velocity quenching.
- Make use of the multi-time stepping algorithm available in NAMD MTS 2-1-3 (2fs inner loop, 2 fs non-bonded, 6fs electrostatics) shake must be enabled.
- Set **PME** grid spacing to **2Å** and increase **interpolation order** to **8**.
- Make use of the **hybrid** load balancer
- Use the memory optimized version of NAMD.
 <u>http://www.ks.uiuc.edu/Research/namd/wiki/?NamdMemoryReduction</u>
 Different handling of fixed and restrained atoms.
 Supports TMD, TCL forces, and other features.
- Limit the number of I/O nodes. NAMD uses parallel I/O.
- If running in NPT, set the period of the barostat to a large value (e.g. ~ 15ps).
- Watch out for excluded volumes for the appearance of bubbles.